BioBB PYTORCH Command Line Help
Generic usage:
biobb_command [-h] --config CONFIG --input_file(s) <input_file(s)> --output_file <output_file>
Train_mdae
Train a Molecular Dynamics AutoEncoder (MDAE) PyTorch model.
Get help
Command:
train_mdae -h
usage: train_mdae [-h] [-c CONFIG] --input_train_npy_path INPUT_TRAIN_NPY_PATH --output_model_pth_path OUTPUT_MODEL_PTH_PATH [--input_model_pth_path INPUT_MODEL_PTH_PATH] [--output_train_data_npz_path OUTPUT_TRAIN_DATA_NPZ_PATH] [--output_performance_npz_path OUTPUT_PERFORMANCE_NPZ_PATH] [--properties PROPERTIES]
Train a Molecular Dynamics AutoEncoder (MDAE) PyTorch model.
optional arguments:
-h, --help show this help message and exit
-c CONFIG, --config CONFIG
This file can be a YAML file, JSON file or JSON string
--input_model_pth_path INPUT_MODEL_PTH_PATH
Path to the input model file. Accepted formats: pth.
--output_train_data_npz_path OUTPUT_TRAIN_DATA_NPZ_PATH
Path to the output train data file. Accepted formats: npz.
--output_performance_npz_path OUTPUT_PERFORMANCE_NPZ_PATH
Path to the output performance file. Accepted formats: npz.
--properties PROPERTIES
Additional properties for the MDAE object.
required arguments:
--input_train_npy_path INPUT_TRAIN_NPY_PATH
Path to the input train data file. Accepted formats: npy.
--output_model_pth_path OUTPUT_MODEL_PTH_PATH
Path to the output model file. Accepted formats: pth.
I / O Arguments
Syntax: input_argument (datatype) : Definition
Config input / output arguments for this building block:
input_train_npy_path (string): Path to the input train data file. File type: input. Sample file. Accepted formats: NPY
output_model_pth_path (string): Path to the output model file. File type: output. Sample file. Accepted formats: PTH
input_model_pth_path (string): Path to the input model file. File type: input. Sample file. Accepted formats: PTH
output_train_data_npz_path (string): Path to the output train data file. File type: output. Sample file. Accepted formats: NPZ
output_performance_npz_path (string): Path to the output performance file. File type: output. Sample file. Accepted formats: NPZ
Config
Syntax: input_parameter (datatype) - (default_value) Definition
Config parameters for this building block:
latent_dimensions (integer): (2) min dimensionality of the latent space..
num_layers (integer): (4) number of layers in the encoder/decoder (4 to encode and 4 to decode)..
num_epochs (integer): (100) number of epochs (iterations of whole dataset) for training..
lr (number): (0.0001) learning rate..
lr_step_size (integer): (100) Period of learning rate decay..
gamma (number): (0.1) Multiplicative factor of learning rate decay..
checkpoint_interval (integer): (25) number of epochs interval to save model checkpoints o 0 to disable..
output_checkpoint_prefix (string): (checkpoint_epoch) prefix for the checkpoint files..
partition (number): (0.8) 0.8 = 80% partition of the data for training and validation..
batch_size (integer): (1) number of samples/frames per batch..
log_interval (integer): (10) number of epochs interval to log the training progress..
input_dimensions (integer): (None) input dimensions by default it should be the number of features in the input data (number of atoms * 3 corresponding to x, y, z coordinates)..
output_dimensions (integer): (None) output dimensions by default it should be the number of features in the input data (number of atoms * 3 corresponding to x, y, z coordinates)..
loss_function (string): (MSELoss) Loss function to be used. .
optimizer (string): (Adam) Optimizer algorithm to be used. .
seed (integer): (None) Random seed for reproducibility..
YAML
Common config file
properties:
num_epochs: 50
seed: 1
Command line
train_mdae --config config_train_mdae.yml --input_train_npy_path train_mdae_traj.npy --output_model_pth_path ref_output_model.pth --input_model_pth_path ref_output_model.pth --output_train_data_npz_path ref_output_train_data.npz --output_performance_npz_path ref_output_performance.npz
JSON
Common config file
{
"properties": {
"num_epochs": 50,
"seed": 1
}
}
Command line
train_mdae --config config_train_mdae.json --input_train_npy_path train_mdae_traj.npy --output_model_pth_path ref_output_model.pth --input_model_pth_path ref_output_model.pth --output_train_data_npz_path ref_output_train_data.npz --output_performance_npz_path ref_output_performance.npz
Apply_mdae
Apply a Molecular Dynamics AutoEncoder (MDAE) PyTorch model.
Get help
Command:
apply_mdae -h
usage: apply_mdae [-h] [-c CONFIG] --input_data_npy_path INPUT_DATA_NPY_PATH --input_model_pth_path INPUT_MODEL_PTH_PATH --output_reconstructed_data_npy_path OUTPUT_RECONSTRUCTED_DATA_NPY_PATH [--output_latent_space_npy_path OUTPUT_LATENT_SPACE_NPY_PATH] [--properties PROPERTIES]
Apply a Molecular Dynamics AutoEncoder (MDAE) PyTorch model.
optional arguments:
-h, --help show this help message and exit
-c CONFIG, --config CONFIG
This file can be a YAML file, JSON file or JSON string
--output_latent_space_npy_path OUTPUT_LATENT_SPACE_NPY_PATH
Path to the reduced dimensionality file.
--properties PROPERTIES
Additional properties for the MDAE object.
required arguments:
--input_data_npy_path INPUT_DATA_NPY_PATH
Path to the input data file.
--input_model_pth_path INPUT_MODEL_PTH_PATH
Path to the input model file.
--output_reconstructed_data_npy_path OUTPUT_RECONSTRUCTED_DATA_NPY_PATH
Path to the output reconstructed data file.
I / O Arguments
Syntax: input_argument (datatype) : Definition
Config input / output arguments for this building block:
input_data_npy_path (string): Path to the input data file. File type: input. Sample file. Accepted formats: NPY
input_model_pth_path (string): Path to the input model file. File type: input. Sample file. Accepted formats: PTH
output_reconstructed_data_npy_path (string): Path to the output reconstructed data file. File type: output. Sample file. Accepted formats: NPY
output_latent_space_npy_path (string): Path to the reduced dimensionality file. File type: output. Sample file. Accepted formats: NPY
Config
Syntax: input_parameter (datatype) - (default_value) Definition
Config parameters for this building block:
batch_size (integer): (1) number of samples/frames per batch..
latent_dimensions (integer): (2) min dimensionality of the latent space..
num_layers (integer): (4) number of layers in the encoder/decoder (4 to encode and 4 to decode)..
input_dimensions (integer): (None) input dimensions by default it should be the number of features in the input data (number of atoms * 3 corresponding to x, y, z coordinates)..
output_dimensions (integer): (None) output dimensions by default it should be the number of features in the input data (number of atoms * 3 corresponding to x, y, z coordinates)..
YAML
Common config file
properties:
batch_size: 1
Command line
apply_mdae --config config_apply_mdae.yml --input_data_npy_path train_mdae_traj.npy --input_model_pth_path ref_output_model.pth --output_reconstructed_data_npy_path ref_output_reconstructed_data.npy --output_latent_space_npy_path ref_output_latent_space.npy
JSON
Common config file
{
"properties": {
"batch_size": 1
}
}
Command line
apply_mdae --config config_apply_mdae.json --input_data_npy_path train_mdae_traj.npy --input_model_pth_path ref_output_model.pth --output_reconstructed_data_npy_path ref_output_reconstructed_data.npy --output_latent_space_npy_path ref_output_latent_space.npy